
J. Appl. Mothshiechs Vol. 51, No. 2, pp. 221-236.1993 0021~8928/93 $24.00+.00 
Printed in Grtat Britain. 0 1993 Pergamon Press Ltd 

ANALYTICAL METHODS IN THE THEORY OF 
VIBRO-IMPACT SYSTEMS-f 

A. P. IVANOV 

Moscow 

(Received 11 October 1991) 

A new approach to the study of vibro-impact systems is proposed, based on a continuous repre- 

sentation of motions with impacts in an auxiliary phase space. In the Lagrange-coordinate description, 

the phase trajectories experience discontinuities at the impact times. Direct investigation of such curves 

is difficult, as the standard topological concepts, such as neighbourhood and connectedness, break 

down. The traditional approach is to construct a point mapping at the level of the limiter [l]. With that 

choice of cross section, however, the Poincare map is not continuous everywhere, not to speak of the 

impossibility of explicitly constructing the map in practice [2., 31. 

These difficulties can be overcome by using standard qualitative methods: the Poincark-Bendixson 

theory, Lyapunov’s second method, etc. Several general results are established, touching on the nature 

of the equilibrium positions and periodic motions with impacts. 

1. THE METHOD OF CONTINUOUS REPRESENTATION 

CONSIDER a mechanical system with one degree of freedom and a unilateral constraint 

x”= f(t,x,x’), x 2 0 (1.1) 

where f is a continuously differentiable function, either independent of t or periodic in t with 
period T. The motion at x = 0 is defined as follows: 

x”= max(O,f} for x’ = 0; x’+ = --Kx’- for x’ <O (1.2) 

where the plus and minus superscripts denote the pre- and post-impact velocities, and K is 
Newton’s coefficient of restitution, K E (0, 1). By (1.2), the phase trajectories of system (1.1) are 
discontinuous on the half-line x = 0, x’ < 0 (Fig. la). 

We wish to define new phase variables S, u that are continuous functions of time. Put 

x = ISI, x’ = F(s,u) 

where F is a discontinuous function such that, when the phase trajectory in the (s, U) plane 
intersects the s= 0 axis, the boundary conditions of the impact for the variable x’ are 
automatically satisfied. If attention is confined to the case in which s’ and 2) have the same sign, 
the intersection in question may occur when the trajectory crosses from the fourth quadrant of 
the (s, u)-plane into the third (Fig. lb) or from the second into the first; at the same time, the 
product su will change sign from minus to plus. Consequently, the second condition in (1.2) 
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will be satisfied if 

F(+O, u> = -KF(-O, U) for 2) > 0 

F(-O,V) = -KF(+O, u) for 2) c 0 

The simplest substitution satisfying these requirements is 

x = IsI, x’ = Resigns, R = 1 - ksign(su), 
1-K 

k = - 
l+lc (1.3) 

The variation of the new variables s, u, by virtue of (1.3), (l.l), is described by the equations 

s’ = Ru, 2)’ = R-’ signsf(r,lsl, Resigns) (1.4) 

in which the right-hand sides are discontinuous at s = 0 or V= 0. There is now a fairly 
sophisticated theory of systems with discontinuous right-hand sides (see [4]). The main merit 
of system (1.4) compared with (1.1) is that the phase trajectories in the (s, u)-plane are contin- 
uous (see Fig. lb). In absolutely elastic impacts, K = 1, k = 0, and formulae (1.3) reduce to the 
substitution suggested in [5]. 

Equations (1.4) remain unchanged if the signs of s and u are both inverted. The motion of 
the representative point in the (s, u)-plane is uniquely defined if s2 + u2 + 0; uniqueness breaks 
down at the origin, for if 

is any solution of system (1.4), then the function 

s= -s1(t). u= -u,(t) (1.6) 

describes another solution. By (1.3), both solutions (1.5) and (1.6) correspond to the same 
trajectory in the (x, x*)-plane. 

Redefining the right-hand sides of system (1.4) on the lines of discontinuity away from the 
origin has no effect on the solution; by the first equation of (1.2), the correspondence (1.3) is 
preserved at s = v = 0 if one puts 

s’ = 0, u’ = (l-k)-’ max{O,f(r,O,O)} (1.7) 

Then, if f 6 0, the representative point remains at the origin (“grazing” motion) but if f > 0, 
it leaves the origin along one of the curves (1.5) or (1.6). 

The fact that the solutions of system (1.4) are not differentiable at v = 0 is a consequence of 
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the choice of the substitution (1.3). By using a function F(s, U) of a more complicated form, one 
can construct an auxiliary system whose right-hand sides have discontinuities on the straight 
line s = 0 only, for example 

F(s,u)= 
( 

I-$arctgY usigns 
1 

(1.8) 

Example. Consider a linear oscillator with impacts against a limiter 

x”+Zbx’ +a2(x-x0)=0, x20 (1.9) 

where a2 > b2 and x,, describes the adjustment of the system: positive values correspond to clearance, and 
negative, to preload. We shall assume that x0 = 0. The substitution (1.3) gives a system 

s’ = Ru, II’ = -2bu-a2R-‘s 

which has the following general solution in each quadrant of the (s, u)-plane 

s = t+ (Cl(i)cosGr +Cp) sin&), 2) = R-Is’, S2 = a2 - b2 

The constants C$ change whenever the phase trajectory intersects the coordinate axes, in such a way 
that the trajectory remains continuous. With initial conditions s = 0, u = ‘I), > 0 at t = 0, we have Ci”) = 0, 
Cp) = (1- k)S”u, in the fit and fourth quadrants. At t = a/6 the trajectory enters the third quadrant, and 

continuity demands that 

Ci” ~0, C~‘)=OC$~), a=Kexp(-nb/6) 

Finally, for t E (27~16, 3n/6), we have Cf’ = 0, Cp’ = o’C$“‘, and so on. 
The general appearance of the phase portrait depends on the constant cr. If Q= 1, all the phase 

trajectories in the (s, u)-plane are closed (Fig. 2a); if (T < 1 they approach the origin asymptotically as 

t + += (Fig. 2b); and if u > 1 they approach the origin asymptotically as t + -0~ (Fig. 2~). 

2. CLASSIFICATION OF SINGULAR POINTS 

We will study the singular points of system (1.1) in the autonomous case, i.e. when the right- 
hand side is not explicitly dependent on time. These are the roots of the equationf(x*, 0) = 0, if 
x* > 0, as well as the origin. In the first case the presence of a one-sided limiter does not affect 
the motion in a small neighbourhood of the singular point, so that the nature of the latter can 
be investigated by the usual methods. 

FIG.~ 
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To analyse the neighbourhood of the point (0, 0), we use the representation (1.4). Here one 
can use the standard classification, as presented in [4], but the special form of system (1.4) will 
help to derive more complete results. 

Following [4], we shall call a singular point of system (1.1) structurally stable if, for any 
function g(x, Y), sufficiently close to fin the metric of C,, the system 

x-= g(x,x’), x 2 0 (2-l) 

has a singular point of the same topological type. 

Theorem 1. There exist exactly two types of structurally stable singular points of system (1.1) 
at the origin: 

1. if f, = f(0, 0) > 0, all trajectories in some neighbourhood of the origin will leave that 
neighbourhood within a finite time (a “quasi-saddle-point” [6]); 

2. if f0 < 0, all trajectories in some neighbourhood of the origin will enter the singular point 
within a finite time (a “quasi-focus” or “sewn focus” [6]). 

Singular points with f, > 0 do not maintain their topological type under variations of the 
function f, even variations that are small in the metric of C,, r * 1. 

Proof. 1. Since fo > 0, it follows that in a neighbourhood U, of the origin 

f(x,x’)3 m>O 

If the distance between f and g in the metric of C,(U,) is at most m/2, then for (x, x’) E U,, 

g(x,x’)a m/2>0 

Suppose that at time t = to the point (x0, xi) lies in U,,. Then the following inequalities hold 
for each of systems (1.1) and (2.1) at points of U, 

so that after a time 

the trajectories of both systems will leave U,. 
2. If f0 CO, there is a neighbourhood U,, in which 

O<mS-f(x,x’)s M’(l-k*)/2 

where m and M are constants. Consider the function 

G(s,u) = p3 + Usu, 
(k* - 1) p2 =- 

WO 

v2 +Isl 

(2.2) 

(2.3) 

a = M-’ min(J$,3k/(3+k)] 

By (2.2), we have in U,, 
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The function G is positive definite, Xp’ < G < Kp3, and its derivative with respect to time is, 

by (1.4) 

dGldt=~p(p*)‘+ccv*R+aR-‘[p* +(l-R*)u* l(2fa)If 

(p’)‘=-2klul+I~l[k+sign<su)l(l-f/f,) 

Under our assumptions 

-dGldt=3kpl+j$ au*[3 - ksign(su)] - c&p2f + 

+%(1-f / fo)[3p]u](k+sign(su))+a(k2 -l)u*R-‘1) 

ramp2/(1+k)+o(p2)=O(GK) 

since by differentiability f = fo = O(p). 
Since the improper integral 

Jo = 7 G-%dG = 3Gf 
0 

is convergent, we conclude that G will vanish within a time of the order of p. When that 
happens the representative point will reach the origin and the system will reach equilibrium by 
condition (1.7). This case of system (1.1) describes quasi-plastic impact [7]. The phase portrait 
looks like Fig. 2(b), but unlike the example of Sec. 1, the trajectories will converge to the origin 
in a finite time. 

3. If fo =0, the type of singular point will depend on the values of the partial derivatives off 
at the origin. System (1.4) becomes 

s’ = Ru, u’ = R-‘fi’s+ fiu+ @(]s],Rusigns)R-’ *signs (2.4) 

fi’ =g(o,o,, f; =$om 
tJ)EC ?!Laa 

l’ ax -Z =O for x=x'=0 

The linear system obtained from (2.4) by putting @=O has a singularity of one of the 
standard types at the origin: saddle-point, node, focus or centre (the last two were discussed in 
the example of Sec. 1). 

For a function g close to fin the metric of C,, the number go is not necessarily equal to zero. 
Let us assume that go >O. Then the origin is a “quasi-saddle-point” for system (2.1); in 
addition, the system may have other singular points near this one: for such points 

a8 u=O, g;s+gOsigns+o(s)=O, &=x(0,0) (2.5) 

If g,” > 0, the second equation of (2.5) has no roots, while if g,” c 0 it has two roots 

s,,, = +g* /g; + o(gO) 

The discussion of the case go < 0 is similar. 
Thus, arbitrarily small variations of the right-hand side of system (2.1) will cause both the 

number of singular points and their types to change. 
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b<O b>O 

FIG. 3. 

Example. In the oscillator (1.9), the origin represents contact of the impactor and the limiter. If x0 < 0 

the point is a quasi-focus, if x0 > 0, a quasi-saddle-point. If b c 0, CT c 1, the point ia a stable focus if x0 = 0, 
variation of x,, causes bifurcation, producing a quasi-saddle point, a pair of unstable foci and a stable limit 
cycle (Fig. 3; see also [8]). 

3. THE STABILITY OF EQUILIBRIUM POSITIONS 

Some results on the stability of equilibrium positions of a system of two equations with 
discontinuous right-hand sides were obtained in [9]. We will consider the stability of the 
equilibrium position of system (1.1) at the origin as a function of the value of f and its 
derivatives there. 

If f, > 0, the origin is not an equilibrium position; if J, c 0, it follows from Theorem 1 that it 
is asymptotically stable. If fo = 0 the question of stability reduces to consideration of system 
(2.4). 

Theorem 2. In each of the following cases 

(l)f1° >o 

(2)f1°<0, D=(f2yjZ+4fi0>0, f;>o 

(3)f,‘cO, DcO, a=rcexp(rcf~//)>l; 

the equilibrium position of system (2.4) at the origin is unstable for any non-linear part @; in 
the cases when 

(4)&<0, D>O, f; c0 

(5)f,’ <O, D<O, a<1 

it is asymptotically stable for any non-linear part 0. 
In all other cases the stability of the system depends on a. 

Proof. To analyse cases 1, 2 and 4 (saddle-point, node), we note that if @= 0 the linear 
system (2.4) has invariant lines whose slopes are the roots of the quadratic equation 

z2-f;z-f,‘=O, z=Rv/s 

If the non-linear terms are included, these lines determine the asymptotic directions for 
system (2.4): for a positive root t there is an asymptotic direction as I + -00, for a negative 
root, as t + +oo. Since these directions are transverse to the impact line s = 0, the system, on 
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approaching the singular point, will experience only a finite number of impacts against the 
limiter, and the presence of the unilateral constraint will not affect stability. 

In cases 3 and 5 (a focus), we let fi * denote a number such that o, evaluated for specified fi” 
and K, equals unity. Then fro > fi * for an unstable focus and fro < fi * for a stable one. The 
trajectories of the auxiliary linear system 

s’ = Ru, 2)’ = R-‘f,‘s + f;u (3.1) 

are closed (Fig. 2a), each of them intersecting the half-line s = 0, u = 0 at a single point (0, u,). 
Define J(s, U) = u,,. Then J is a first integral of system (3.1) (for the explicit form of this 
function, see [9]), i.e. 

$R,+g (fi’R-‘s + fit;) = 0 (3.2) 

The variables X, 
preceding section, 
functions 

By (3.2) and (3.3) 

u may be expressed in terms of J and t; by analogy with the example of the 
the dependence on J is linear. By the formulae for differentiating implicit 

,_aJ aS+aJ aI@ s --- aJ 2) 
asaJ &dJ asJ+duT 

$=-(f;Ru+f;s);, $=;R’v 

(3.3) 

(3.4) 

Q = R2v2 - r;s2 - f;Rsu 

where, in the cases considered, the quadratic form Q is positive definite. We note that J is a 
quantity of the first order in r = (s’ + u’)“‘, while its partial derivatives (3.4) are bounded. We 
will construct a Lyapunov function: L = J + km. This function is positive definite for all real h, 
and by (3.4) 

(3.5) 

where the dots stand for smaller-order terms. The choice of h is governed by the requirement 
that the function (3.5) be sign definite-with the same sign as the difference fi”-fi *. By 
Lyapunov’s theorem, this implies the truth of our stability and instability assertions. 

The derivative L’ is of the same order of magnitude as L. In cases 3 and 5, therefore, the 
motion towards the origin along a phase trajectory takes infinite time (unlike the quasi-focus 
case), and system (1.1) experiences an infinite number of collisions with the limiter. 

4. THE STABILITY OF PERIODIC SOLUTIONS 

A periodic solution of system (1.1) with impacts against the limiter corresponds to a closed 
trajectory r in the phase plane (s, u), encircling the origin. Since equations (1.4) are invariant 
under the substitution s, u + -s, -u, the curve symmetric to I about the origin will also be a 
phase trajectory. This limits the possible types of periodic motion when the right-hand side of 
Eq. (1.1) is not explicitly dependent on time, i.e. in autonomous systems. In addition, I cannot 
self-intersect at any point other than the origin, so that impacts take place at equally spaced 
times 7 and at equal approach velocities x’- (the motion of the representative point along I 
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takes a time z). 
If there are no other closed trajectories in the neigbbourhood of P, it follows from 

Poincar~-~e~~~n theorem for systems with discontinuit~es that all the trajectories in 
neighbourhood wind onto r as t + ~00 or as t +--DO, 

the 
this 

The phase trajectories of a non-autonomous system may self-intersect, and the type of the 
periodic motion is characterized by two natural numbers: N =z/T and the number K of 
impacts per period. 

The different definitions of stability for periodic solutions may be formutated in the usual 
way. Note that in order to state these devotions directly for system (1.1) one must modify the 
concept of a neighbourhood for discontinuous trajectories [3], while on passing to point 
mappings [l] it is not always clear what type of stability is being discussed. 

Orbital stability of an isolated periodic motion depends in an autonomous system on its 
asymptotic behaviuur: if nearby trajectories wind onto I’ from inside and outside as t + +-, the 
motion will be asymptoti~y stable; otherwise, it will be unstable. The behaviour of these 
curves may be ascertained by comparing the ordinates of their successive intersections with the 
half-line s = 0, u > 0. Thus, this half-line determines the Poincart? section in the investigation 
of orbital stability. 

To analyse stability in Lyapunov’s sense, one must compare the position of the 
representative points on P and on the perturbed trajectory at the same times. In that case the 
Puincare section is defined by a plane t = con&. 

One example demonstrating the difference between the two types of stability is the motion 
of a heavy particle performing absolutely elastic collisions with a horizontal base; then k = 0 
and system (1.4) is 

s’ = u, u’ = -signs 

All the phase trajectories of this system are closed, but the periods of motion around 
different trajectories may be different. Thus each periodic motion is orbitally stable, but 
unstable in Lyapunov’s sense. 

An algorithm for ~vest~gating stability in the first approximation in systems with dis- 
cun~nuo~ right-hand sides was proposed in [lo]. We shall apply that algorithm to periodic 
motion of system (1.4), on the assumption that the impactor never grazes the limiter (i.e. r 
never passes through the origin). Such a motion is represented in the (s, u)-plane by a con- 
tinuous curve s,(r), I_+&), which is either closed (if K is even) or passes at times t = 0 and t = 7 
through points symmetric about the origin. In the second case, one can consider instead of this 
motion a motion of type (zlv,2K), whose trajectory in the (s, %)-plane wilt be closed. 

We may assume without loss of generality that ~*~~~~~~~~*~ ;cO. At times for which 
s&)u&) ;c 0, the equations in variations 4 = s -s,, 9 = 2) - v,, for system (1.4) are 

where the number R and partial derivatives off are evaluated for the solution in question. 
A fundamental matrix of solutions of system (4.1) satisfies the differential equation 

(4.2) 

At times when the trajectories (stir u,) intersect the coordinate axes, the matrix X(t) changes 
abruptly; on passing from the first quadrant to the fourth, or from the third to the second 

(4.3) 
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(minus and plus superscripts denote the values of the matrix just before and after the inter- 
section); in the reverse passages 

X-0) (4.4) 

and upon i~te~ection with the axis s = 4 corresponding to impacts in the original system (1.1) 

Stability depends on the roots h, pz of the characteris~~ equation 

The criterion for asymptotic stability is 

I I Pt3 <1 (4.7) 

This inequality can be verified directly only after integrating Eqs (4.2)-(4.5), so it is 
important to develop easily verifiable ~oudi~o~~ even if only necessary or only sufficient. The 
next theorem establishes such a condition. 

~~eo~e~ 3. If x0(t) is an asy~toti~ally stable periodic motion of type (N, k;), then 

Pro@‘, Applying Li~uvi~e’s theorem to system (4.2), we get 

B’(r) = f,B(t), B(t) = det~X(~~~, B(O) = 1 (4.9) 

To calculate the number fyz) = p&, we note that B changes abruptly across the coordinate 
axes, in such a way that B” = rcB_ for cases (4.3) and (4.5) and B’ = B-I K for case (4.4). It is 
clear from easy geometric arguments that to each inter~etio~ of trajectories (s,, u*) and the 2) 
axis there corresponds an odd number of inter~~~o~s of the s axis, and the n~b~r of type 
(4.3) is just one mote than the number of those of type (4.4). Solving the Cauchy problem for 
the linear equation (4.9) and noting that B is multiplied by K’ for each impact, we see that the 
left-hand side of Eq, (4.8) equals B(r), so that the assertion of the theorem follows from the 
c~terio~ (4.7). 

Curdlary. If the system is autouomo~, condition (4,g) is necessary and sufficient for orbital 
asymptotic stability (as already pointed out above, in that case always h: = 1). 

Indeed, in that case p1 =I Ill]; therefore, B(z) is equal to pa-the multiplier of the limit 
cycle r. 

Specific problems are convenien~y tackled using a simplified algo~~rn to construct the 
matrix X(z). Let X,(z) denote a fundamental matrix of solutions of the Iinearized system (1.1). 
in the intervals of impact-free moron, the variation of this matrix is governed by the equation 

(4.10) 
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A comparison of systems (4.2) and (4.10) implies the following relationship between X and 
X1 

1 0 
X(t) = I I 0 R-l(t) X1(t) i Ri ) sign(sOWsO(fO)) 

I 

(4.11) 
0 

The matrix X1 may be discontinuous only at impacts, when, by (4.5) and (4.11) 

x:= (f+ I --x 0 

+Kf-)/X’-- -K I xl- 
(4.12) 

f * = f(t,O,x.f) 

Integrating system (4.10), (4.12), one can construct the monodromy matrix X1(r) which, by 
(4.11), is similar to X(2). 

Example. Let us consider forced oscillations of the oscillator (1.9) 

x”+2h’+a*x=P(f), P(t+T)=P(t) (4.13) 

Suppose the system has a periodic motion x(t) = p(t) of type (N, 1) (i.e. one impact per period r = NT). 
Irrespective of the form of the right-hand side, the variational equations have the following general 
solution 

x(r) - p(t) = Gbr(Ci cosgt + C, sin&) 

Applying formula (4.12) at the impact time 
coefficients of the characteristic equation 

a, = B(z) = tc*e-26’ 

t = p, we finally obtain the following expression for the 

(4.14) 

a, = tr(Xi(2)) = eebr 

By Schur’s theorem, the stability conditions (4.7) are now 

(4.15) 

5. BIFURCATIONS IN VIBRO-IMPACT SYSTEMS 

Let us assume now that the right-hand side of Eq. (1.1) depends on a parameter p. The 
elements of the monodromy matrix for periodic motions with impacts are continuous 
functions of u, as follows from the algorithm for constructing the matrix (4.10), (4.12). Hence 
the truth of inequality (4.7) guarantees that stable periodic motions will be preserved when u is 
varied. Bifurcations will occur when one of the multipliers is on the unit circle; these 
bifurcations will be of one of the usual types-“saddle-node”, period-doubling, and so on. 

The so-called C-bifurcations are specific to impact systems [12]: if a periodic trajectory passes 
through the origin at some parameter value (the impactor grazes the limiter at some instant of 
time), the functions p&t) may experience a discontinuity. Indeed, in that case the 
denominator in (4.12) will vanish-generally implying the appearance of infinitely large 
elements in the matrix X,(z). As a result of a C-bifurcation, whole families of periodic or 
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FIG. 4. 

subperiodic motions may disappear or be created [X3-15]. Feigin [13-151 believes that all these 
motions are unstable in the neighbourhood of the critical value of the parameter. However, we 
shall show presently that this statement is not entirely accurate. 

Theorem 4. Let system (1.1) be autonomous and assume that f is a differentiable function of 
a parameter P. For p in an interval (-a, 0), where E is a certain positive number, impact-free 
periodic motions exist whose m~tiplie~ are jointly bounded by a number h less than unity 

ps(l.L)G h<l, l.ln(--E,O) 

but for p>O there are no impact-free periodic motions (we recall that in the autonomous case 
pi(p) 3 1). Then, for suE~cientiy small positive p, there exist stable motions with one impact per 
period. 

Proof. Picture the evolution of the periodic motions as in Fig. 4; jt is negative for curve 1, 
zero for curve 2 and positive for curve 3. The last-named trajectory is discontinuous in the (x, 
x*)-plane plane but in the (s, u)-plane, however, it is closed, though the period is twice as large 
as in the original variables. Suppose we now draw positive and negative half-trajectories of 
system (1.1) through the origin and continue them until their first intersection with the x axis, 
at points xi, x;; at p = 0 the two points coincide. It follows from the existence of a periodic 
curve at l.t = 0 that, for sufficiently small p, the function fis positive at the origin. In the domain 
x > 0, therefore, the phase trajectories are approximated by parabolas. Construct the successor 
function x =g(T) [ll] on the half-line x>O. On impact, the representative point moves along 
the tangent to the parabolic trajectory through the origin; hence the distance from the point to 
the trajectory decreases by a factor of K’. Consequently, we obtain the following expression 
for the successor function 

When p < 0, orbital asymptotic stability implies xi c x;; if p > 0 the non-existence of impact- 
free periodic motions implies xi z= xi. Since pz(-O)<l, formula (5.1) describes a two-sided 
bifurcation: when p c 0 the map g has a fixed point 

and when p > 0 the fixed point is 

x;=x;+(x; -x~)/(l-Jr2pz(-O))>x~ 

Since g’(xf) = p,(-O), g’(x;) = rc’p,(-O), both these points are stable. 
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Remnrk. If p,(-O)~(l, K-*), the bifurcatioa is one-sided: both fixed points xi2 exist for & < 0 (thus, 
curve 3 in Fii. 4, like curve 1, is drawu for g < 0). Wee g’(x;)> 1, g’(_+< 1, the impact-free motious are 
uustable, whiIe those with impacts are stabIe, 

In non-autonomous systems, the trajectories may self-intersect in the phase plane, so that a 
C-bifurcation may cause changes in the period or in the number of impacts per period. 

Let us assume that for parameter vahX%S j& E(-E, o] a family x,(t) of T-periodic motions of a 
non-autonomous system exists, exactly one of which involves grazing incidence of the 
impactor and the limiter 

Form the monodromy matrix X&t, &+z)~ by solving system (4.10) with condition (4.12). 
Denote its eIements by x&t) fi, i = I, 2) 

I%eurem 5. A necessary condition for the existence of a stable z-periodic motion when u > 0, 
with one extra impact per period compared with motions with p < 0, is that 

(53) 

Proofi The existence of an additional impact in the ~ei~bo~ho~d of t = to implies that the 
monodromy matrix has a jump, in accordance with (4.12). The determlnant is then multiplied 
by K’, while the trace is increased by a quantity proportional to x,&)Ix~. Since x*- 3 0 as 
p + 0, we see that condition (5.3) is indeed necessary for the truth of the second inequality in 
(4,153, 

Examyk. For the oscillatllr (4.13), if P(&,, J.L)# 0, the necessary condition (5.3) becomes 

silltk=o (5.4) 

System (4.13) has a particular solution. 

If F c 0, this formula de%ribes an imp%%free periodic motion. If p = 0 the; impactor @UX% the limiter 
at times & 10, fT, f2T, lrnd so on. But if /J, > 0, there are 110 impact-free motions. 

A periodic motion of type (1.1) is described in intervals between impacts by the formula 

If the impacts take place at times t* cmT, M E Z, the Tperiadicity conditiolas are 

(5.7) 



Analytical methods in the theory of vibro-impact systems 233 

A direct check will show that the geometric conditions for the solution of (5.7) to exist are satisfied, 

that is, the function x,,(t) is positive in the interval (Yc, f*+T). 
In formulae (4.14) we obtain 

Consequently, a C-bifurcation will produce a stable periodic motion with impacts. 

By analogy with Theorem 5, one can formulate a necessary condition for a C-bifurcation to produce 

stable motions of type (N, K + 1). This condition is 

xgy-o)=O (5.8) 

where x:“‘(p) are the elements of the Nth power of the monodromy matrix X1(& + 2’). 
In our example, condition (4.8) looks as follows: 

s~(N~~) = 0 (5.9) 

Remark. Equations (5.4) and (5.9) actually state that the natural frequency of the damped oscillations 

of the oscillator and the frequency of the periodic load are commensurable. In most situations in 

mechanics, resonances constitute a destabilizing factor. In this case, however, resonances cause stability to 

be preserved under C-bifurcation. As shown in [16], stable periodic motions of system (4.13) may also 
appear near a resonance: if the left-hand side of Eq. (5.4) is a negative number close to zero, C- 
bifurcations are preceded by a “saddle-node” bifurcation, which gives rise to a pair of motions with non- 
degenerate impacts. One of these motions degenerates and annihilates together with the impact-free 
motion at R = 0; the stable motion with impacts, however, is preserved when p > 0. 

In non-autonomous systems, there is yet another case in which stability is preserved under a C- 

bifurcation. For it to occur, the following conditions must hold when u =0 

The scenario is depicted approximately in Fig. 5: in a trajectory of the third type, the number of impacts 

per period is twice as large as for trajectory 1. It is ~de~tood here that at the instant trajectory 3 
intersects the ‘u axis, we have f=O, so that, by (4.12), the “extra” impacts cause the multipliers to be 
multiplied by K’. 

6. GENERALIZATION OF THE METHOD OF CONTINUOUS REPRESENTATION 

The method of continuous representation of discontinuous oscillations, as described in Sec. 
1, may also be used to analyse multi-dimensional systems with one impact pair, including cases 
when the coefficient of restitution depends on the initial impact conditions or when dry friction 
must be taken into account. 

Let y=(x, Y, z,, . . . . x,) be the vector of phase variables, x a 0. The motion in the domain 
x > 0 is described by the equations 

y’ = WY) (6.1) 

In the x= 0 plane the variation of x’ is governed by a rule analogous to (1.2), while the 
remai~ng equations of system (6.1) remain ~changed. In particular, mechanical systems with 
an ideal unilateral constraint may be reduced to the form of (6.1) [5]: in that case z will be 
Lagrangian coordinates and the conjugate momenta; the equations of motion will be written in 
Routh form. 
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s 

FIo.5. 

We make the substitution (1.3), leaving z unchanged. The continuous representation of 
system (6.1) will be 

s’= Rv, 2)’ = R-‘Fz signs, Z) = Fj+z (i = l,..., n) (6.2) 

where the right-hand sides are discontinuous when SZ) = 0. 
In the more-general case, when the impact interactions are described by the formulae 

n .-I = -x-H&y-), 0 c Ho < 1 (6.3) 

Zi'=Z~+X'-Hj(Y-) (i=l*...,n) 

the auxiliary phase variables S, U, w,, . . . , w,, may be defined as follows: 

x = IsL x’ = usigns(l- k* sign(m)) (6.4) 

zj=Wj+X'aj(lUl,WI,...,Wn), k*=(l-Ho)/(l+Ho) 

The functions a, are chosen so that the variables U, wj remain unchanged under the impact 
transformations (6.3). To that end, they must satisfy the system of equations 

aj =-Hj /(l+H,) 

where we have put x’- = - I u I(1 + k’). 
Differentiating Eqs (6.4) on the assumption that su#O, one obtains a continuous 

representation of system (6.1) with impacts (6.3). 

Example. A material particle falls at an angle onto a rough horizontal plane. The equations of the 

impact are 

x .-I- =-_KX’_, z+ = z- + u(1 + lc)x’_ (6.5) 

where x, z are the Cartesian coordinates of the particle (x is the height above the base plane) and p is the 
coefficient of Coulomb friction. 

The second equation of (6.5) is true if the value of z* calculated using it is positive, and the same holds 

for z’-; otherwise one must assume that z*+ = 0, i.e. the sliding of the particle terminates. Formulae (6.5) 
reduce to (6.3) if we put H,, = K, HI = p.(l+ K). Consequently, the auxiliary variable w may be defined as 
&v=pY+z’. 

In the inter-impact intervals x” = -g, r” = 0. Therefore, the continuous representation of the system is 

s’ = Ru, 2)’ = -gR-’ signs (6.6) 
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z’ = w -pRusigns. w’ = -pg (w 20) 

where g is the acceleration due to gravity, and the mass of the particle is unity. 
System (6.6) is easily integrated. The first two equations describe the motion of a particle falling 

perpendicularly onto the base, in the form of an infinite impact process that is damped out in finite time 
[7]. The fourth equation is formally the same as that of the motion of a body sliding along the rough 
surface (at a velocity w); if the initial value of the velocity z’ is sufficiently large, this equation will remain 

valid after the jumps stop. 

Using the continuous representation, one can establish various results for multi-dimensional 
systems, relating to the stability of equilibrium positions and periodic motions with impacts. 
Thus, let us assume that F3 = I$ = . . . = Fn+* = 0, F, ~0 for y =O. Then the origin is an 
equilibrium position of system (6.2). Consider the auxiliary system of equations 

2) = Fj+Zlsrv=O (i= 1,2,...,n) 

The right-hand sides of Eqs (6.7) are continuously differentiable in the neighbourhood of 
the singular point z = 0; the type of singularity may be determined in the usual way. 

Further conclusions as to stability will rely on the following theorem. 

Theorem 6. If for all t 3 r,, 

-M d F2(t,0) Q -m c 0 

then the trivial solution of system (6.1) is stable (asymptotically stable) if and only if the trivial 
solution of system (6.7) is stable (asymptotically stable). 

Proof. The assertion will obviously be true if we can show that, for all initial data in some 
neighbourhood U,, of the origin, the phase trajectory of system (6.1) will reach the plane 
x = X’ = 0 in a finite time and remain there at least until it leaves U,. This property follows 
from an analysis of functions (2.3) satisfying conditions (3.2). Although the derivative of the 
function G(s, u) for system (6.2) may be explicitly time-dependent, it will satisfy the same 
estimate. Repeating the arguments used to prove Theorem 1, one sees that G will vanish in a 
finite time, i.e. the trajectory will reach the plane x = X’ = 0. 

Example. The motion of a heavy particle on a sinusoidally vibrating base is described by the equation 

d*xldcp* = Isincp-1, x20 (6.8) 

where cp is the phase of the oscillations, Z is their intensity and x is a non-dimensional quantity 

proportional to the height of the particle above the moving base. 
By Theorem 6, if Z < 1 the origin is an asymptotically stable equilibrium position (the particle moves 

without breaking away from the base). This does not mean that there are no periodic motions with jumps 
[l]; for example, if 

there are periodic motions of period t = 2xN with impacts in phase (pO, where 

Zwscpo = nkN, x’- = -(l+ k)xN (6.9) 

Let us analyse the stability of this periodic motion. The coefficients of the characteristic equation may 

be found by using formulae (4.10) and (4.12) 

ao =I?, al = (l+K)*Isincp~ -1-K’ 
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so that conditions (4.7) become 

2 1+K2 oc tgcpu <-- 
AN 1-K’ 

agreeing with the results obtained in [l]. 

We will find the sufficient conditions for the stability of the origin of coordinates of system (6.8) as a 
whole. Consider the function 

V=j.f$(l-kZ)Iu2+]s] (6.10) 

The derivative of the function (6.10) when su f 0 is 

dV/d~=-lu1[2k-Isincp(k+sign(su))l (6.11) 

Consequently, if 

1<2kl(l+k) (6.12) 

the right-hand side of (6.11) will be negative, and the function (6.10) will satisfy the conditions of the 

Barbashin-Krasovskii theorem. Thus, condition (6.12) is sufficient for global stability. 
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